Adsorption-assisted photocatalytic activity of nitrogen and sulfur codoped TiO2 under visible light irradiation.
نویسندگان
چکیده
Applying post thermal treatment on the doped TiO2 at high temperature is mostly regarded as an indispensable process, although it has negative effects on the photocatalytic activity of doped TiO2. Herein, we synthesized the N- and S-codoped TiO2 (NSTs) with an anatase phase using a simple solvothermal treatment and investigated their visible light photocatalytic activity associated with the thermal behavior of dopants in NSTs. We found that the as-synthesized NST (NST-As) has better visible light photocatalytic activity and adsorptivity than the commercially available P25 and the thermally treated NSTs. The S dopants effectively assist the surface reaction by adsorbing cations of organic dyes on the NST-As surface. The N dopants increase the absorbance at visible light region of NST-As by forming a delocalized state at the band gap of NST-As. However, the photocatalytic activity of NSTs gradually weakens with the post thermal treatment, because S dopants on the NST-As surface are transformed from sulfide to sulfate during the thermal treatment and N dopants move out during the crystallization of TiO2. The adsorption-assisted photocatalytic activity of NST-As under visible light irradiation is an attractive feature for environmental and photonic technologies.
منابع مشابه
Visible Light Activity of Nitrogen-Doped TiO2 by Sol-Gel Method Using Various Nitrogen Sources
In order to improve photocatalytic activities of the pure anatase TiO2 under UV and visible light irradiations, a novel and efficient N-doped TiO2 photocatalyst was prepared by sol-gel method. N-doped titania is prepared using the various nitrogen sources such as: triethylamine, N,N,N’,N’-tetramethylethane-1,2-diamine, ethyldiamine, 1,2-phenylenediamine, propanolamine, and...
متن کاملNickel and either tantalum or niobium-codoped TiO2 and SrTiO3 photocatalysts with visible-light response for H2 or O2 evolution from aqueous solutions.
TiO2 (band gap = 3.0 eV) and SrTiO3 (band gap = 3.2 eV) codoped with nickel and either tantalum or niobium ions showed photocatalytic activities for O2 evolution from an aqueous silver nitrate solution and H2 evolution from an aqueous methanol solution under visible light irradiation (lambda > 420 nm). The visible-light responses were due to the charge-transfer transition from the electron dono...
متن کاملSynthesis of mesoporous TiO2-SiO2-Ag and investigation of its structural and photocatalytic properties under visible light and ultra-violate
In this project, mesoporous titanium oxide-silicon oxide doped by silver (TiO2-SiO2-Ag) was hydrothermally synthesized. Titanium isopropoxide, tetraethyl orthosilicate and silver nitrate were used as precursors for TiO2, SiO2 and Ag, respectively. Initially TiO2-SiO2 mesoporous nanocomposite was synthesized with weight ratios of silica to titania SiO2:TiO2:3:1 via hydrothermal method at 70˚C an...
متن کاملComparison of Photocatalytic Activities of Two Different Dyes Using Pt-Modified TiO2 Nanoparticles under Visible Light
The photocatalytic degradation of Acid Red 91 (AR91) and Acid Yellow 23 (AY23) with different molecular structures and different substitute groups using Pt modified TiO2 (PtTiO2 ) nanoparticles was investigated in the presence of visible light irradiation. Pt-TiO2 nanoparticles were prepared with photodiposition method (PD) and characterized by X-ray diffraction (XRD), scanning electron microgr...
متن کاملVisible light photocatalytic activity of MWCNT/TiO2 using the degradation of methylene blue
Multi-walled carbon nanotubes (MWCNT)-doped TiO2 thin films were synthesized by the dip-coating method. The obtained products were characterized by SEM, EDX, XRD, and UV-vis absorption spectroscopy. The XRD patterns showed the presence of anatase phase. Absorption spectrum of MWCNT-doped TiO2 revealed a red shift in the optical absorption edge due to carbon doping. The photocatalytic properties...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 26 شماره
صفحات -
تاریخ انتشار 2015